Мощный импульсный блок питания своими руками. Как работает простой и мощный импульсный блок питания Инвертор в блоке питания

Решил посветить отдельную статью изготовлению DC AC повышающего преобразователя напряжения на 220В. Это конечно отдалённо относится к теме светодиодных прожекторов и ламп, но такой мобильный источник питания широко применяется дома и в автомобиле


  • 1. Варианты сборки
  • 2. Конструкция преобразователя напряжения
  • 3. Синусоида
  • 4. Пример начинки преобразователя
  • 5. Сборка из ИБП
  • 6. Сборка из готовых блоков
  • 7. Радиоконструкторы
  • 8. Схемы мощных преобразователей

Варианты сборки

Существует 3 оптимальных способы изготовления инвертора 12 в 220 своими руками:

  1. сборка из готовых блоков или радиоконструкторов;
  2. изготовление из источника бесперебойного питания;
  3. использование радиолюбительских схем.

У китайцев можно найти хорошие радиоконструкторы и готовые блоки для сборки преобразователей постоянной тока в переменный 220В. По цене этот способ будет самый затратный, но требуется минимум времени.

Второй способ, это апгрейд источника бесперебойного питания (ИБП), который без аккумулятора в больших количествах продаются на Авито и стоят от 100 до 300руб.

Самый сложный вариант это сборка с ноля, без радиолюбительского опыта никак не обойтись. Придется изготавливать печатные платы, подбирать компоненты, работы очень много.

Конструкция преобразователя напряжения

Рассмотрим конструкцию обычного повышающего преобразователя напряжения с 12 на 220. Принцип работы для всех современных инверторов будет одинаковым. Высокочастотный ШИМ контроллер задаёт режим работы, частоту и амплитуду. Силовая часть выполнена на мощных транзисторах, тепло с которых отводится на корпус устройства.

На входе установлен предохранитель, защищающий от короткого замыкания автомобильный аккумулятор. Рядом с транзисторами крепится термодатчик, который следит за их нагревом. В случае перегрева инвертора 12в 220в включается система активного охлаждения состоящая из одного или нескольких вентиляторов. В бюджетных моделях вентилятор может работать постоянно, а не только при высокой нагрузке.

Силовые транзисторы на выходе

Синусоида

Форма сигнала на выходе автомобильного инвертора формируется за счёт высокочастотного генератора. Синусоида может быть быть двух видов:

  1. модифицированная синусоида;
  2. чистая синусоида, чистый синус.

Не каждый электрический прибор может работать с модифицированной синусоидой, которая имеет прямоугольную форму. У некоторых компонентов в меняется режим работы, они могут нагреваться и начать шабарчать. Похожее можно получить,если диммировать светодиодную лампу, у которой яркость не регулируется. Начинается треск и мигание.

Дорогие DC AC повышающие преобразователи напряжения 12в 220в имеют на выходе чистый синус. Стоят гораздо дороже, но электрические приборы отлично с ним работают.

Пример начинки преобразователя

..

Сборка из ИБП

Чтобы ничего не изобретать и не покупать готовые модули, можно попробовать компьютерный источник бесперебойного питания, сокращенно ИПБ. Они рассчитаны на 300-600вт. У меня Ippon на 6 розеток, подключено 2 монитора, 1 системник, 1телевизор, 3 камеры наблюдения, система управления видеонаблюдением. Периодически перевожу в рабочий режим отключением от сети 220, чтобы батарейка разряжалась, иначе срок службы сильно сократиться.

Коллеги электрики подключали обычный автомобильный кислотный аккумулятор к бесперебойнику, отлично работал непрерывно 6 часов, смотрели футбол на даче. В ИБП обычно встроена система диагностики гелевого аккумулятора, которая определяет его низкую емкость. Как она отнесется к автомобильному неизвестно, хотя основное отличие, это гель вместо кислоты.

Начинка ИБП

Единственная проблема, бесперебойнику могут не понравится скачки в автомобильной сети при заведённом двигателе. Для настоящего радиолюбителя эта проблема решается. Можно использовать только при заглушенном двигателе.

Преимущественно ИБП предназначены для кратковременной работы, когда пропадает 220В в розетке. При длительной постоянной работе очень желательно поставить активное охлаждение. Вентиляция пригодится для стационарного варианта и для автомобильного инвертора.

Как и все приборы, он непредсказуемо себя поведёт при запуске двигателя с подключённой нагрузкой. Стартёр машины сильно просаживает Вольты, в лучшем случае уйдёт в защиту как при выходе батареи из строя. В худшем будут скачки на выходе 220V, синусоида исказится.

Сборка из готовых блоков

Для сборки стационарного или автомобильного инвертора 12в 220в своими руками можно использовать готовые блоки, которые продаются на Ебее или у китайцев. Это сэкономит время на изготовление платы, пайку и окончательную настройку. Достаточно добавить к ним корпус и провода с крокодилами.

Приобрести можно и радиоконструктор, который укомплектован всеми радиодеталями, остаётся только спаять.

Примерная цена на осень 2016:

  1. 300вт – 400руб;
  2. 500вт – 700руб;
  3. 1000вт – 1500руб;
  4. 2000вт – 1700руб;
  5. 3000вт — 2500руб.

Для поиска на Aliexpress укажите запрос в поисковой строке «inverter 220 diy». Сокращение «DIY» обозначает для «сборки своими руками».

Плата на 500W, выход на 160, 220, 380 вольт

Радиоконструкторы

Радиоконструктор стоит дешевле, чем готовая плата. Самые сложные элементы могут быть уже находится на плате. После сборки практически не требует настройки, для которой необходим осциллограф. Разброс параметров радиокомпонентов и номиналы неплохо подобраны. Иногда в пакетик кладут запасные детали, вдруг по неопытности ножку оторвёте.

Схемы мощных преобразователей

Мощный инвертор в основном используют для подключения строительных электроинструментов при строительстве дачи или фазенды. Маломощный преобразователь напряжения на 500вт от мощного на 5000 — 10000 Ватт отличается количеством трансформаторов и силовых транзисторов на выходе. Поэтому сложность изготовления и цена практически одинаковые, транзисторы стоят недорого. По мощности оптимально 3000вт, можно подключить дрель, болгарку и другой инструмент.

Покажу несколько схем инверторов с 12, 24, 36 на 220В. Такие ставить в легковой автомобиль не рекомендуется, можно случайно электрику подпортить. Схемотехника DC AC преобразователей 12 на 220 простая, задающий генератор и силовая часть. Генератор делают на популярной TL494 или аналогах.

Большое количество схем повышателей с 12v на 220v для изготовления своими руками можно найти по ссылке
http://cxema.my1.ru/publ/istochniki_pitanija/preobrazovateli_naprjazhenija/101-4
Всего там около 140 схем, половина из них повышающие преобразователи с 12, 24 на 220В. Мощности от 50 до 5000вт.

После сборки потребуется наладка всей схемы при помощи осциллографа, желательно иметь опыт работы с высоковольтными схемами.

Для сборки мощного инвертора на 2500 Ватт потребуется 16 транзисторов и 4 подходящих трансформатора. Стоимость изделия будет немалая, сопоставимая со стоимостью похожего радиоконструктора. Плюсом таких затрат будет чистый синус на выходе.

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Когда автомобиль долгое время стоит без дела, нужно его хотя бы раз в месяц заводить. Аккумуляторная батарея хорошо снабжает электричеством автомобиль на протяжении 4-5 лет, затем она не в состоянии нормально обеспечивать электричеством машину, а также плохо заряжается от генератора или портативного зарядного устройства. После большого опыта сборки сварочных инверторов, у меня появилась идея сделать на основе таких аппаратов устройство для запуска двигателя.

Это устройство можно использовать как с установленным аккумулятором, так и без него. С аккумуляторной батареей инверторному блоку питания будет даже легче заводить двигатель. Я пытался завести без батареи двигатель на 88 лошадиных сил. Эксперимент удался, без каких либо поломок.

На инверторе нужно настроить выходное напряжение 11,2 В. Стартер двигателя внутреннего сгорания, рассчитан на такое напряжение (10-11 В). Инверторный блок питания , который мы собираем имеет возможность стабилизации напряжения, а также функцию защиты от максимальных токов 224 А, защиту от замыкания электропроводки.

Технология IGBT , по которой разрабатывалась электрическая схема устройства, основана на принципе полного открытия и полного закрытия мощных транзисторов, которые используются в блоке. Это дает возможность как нельзя лучше минимизировать потери на ключах IGBT.

На выходе имеется возможность регулировать силу тока и напряжение за счет изменения ширины импульсов управления силовыми ключами. Так как они работают на высоких частотах, то и регулировку нужно осуществлять на частоте 56 кГц. Такая идеализация работы возможна лишь при стабильной частоте на выходе, а также удержание ее на таких уровнях, при которых действует блок питания. В таком случае будет, изменятся, только ширина и длительность напряжения в диапазоне (0% — 45%), от ширины импульса. Остальные 55% — это нулевой уровень напряжения на ключе управления.

Трансформатор инверторного блока имеет ферритовый сердечник. Это дает возможность подстраивать прибор на высокой частоте 56 кГц. На металлическом сердечнике не создаются вихревые токи.

IGBT транзисторы — обладают необходимой мощностью, а также не создают вокруг себя вихревых полей. Зачем же нужно создавать такие высокие частоты в блоке питания? Ответ очевиден. При использовании трансформатора, чем выше частота напряжения, тем меньше нужно витков обмотки на сердечнике. Еще одним плюсом высокой частоты работы, высокого КПД трансформатора, который в данном случае становит 95%, так как обмотки сердечника выполнены из толстого провода.

Трансформаторное устройство, используемое в схеме маленькое по габаритам и очень легкое. Широтное импульсное устройство (ШИМ) — создает меньше потерь, стабилизируя напряжение, в сравнении с аналоговыми элементами стабилизации. В последнем случае мощность рассеивается на мощных транзисторах.

Те люди, которые разбираются немного в радиоэлектронике, могут заметить, что трансформатор подключается к источнику питания во время тактов двумя ключами. Один подсоединяется к плюсу, другой к минусу. Электрическая схема построения по принципу Фли Бак предусматривает подключение трансформатора с одним ключом. Такое подключение приводит к большим потерям мощности (составляет в общей сложности порядка 10-15 % от полной мощности), так как индуктивные обмотки рассеивают энергию на резисторе. Такие потери мощности недопустимы для построения мощных источников питания в несколько киловатт.

В приведенной схеме такой недочет устранен. Выброс энергий уходит через диоды VD18 и VD19 обратно в питание моста, что в свою очередь еще больше повышает КПД трансформатора.

Потери на дополнительном ключе становят не более 40 Ватт. Схема Фли Бак предусматривает такие потери на резисторе, которые ставят 300-200 Ватт. Транзистор IRG64PC50W, который применяется в электрической схеме блока питания по технологии IGBT, имеет особенность быстрого открытия. В то же время скорость го закрытия намного хуже, что производит к импульсному нагреву кристалла в момент закрытия транзистора. На стенках транзистора выделяется около 1 кВт энергии в виде тепла. Такая мощность очень большая для транзистора, что чревато перегревом.

Для снижения этой мгновенной мощности между коллектором и эмиттером транзистора включают дополнительную цепь С16 R24 VD31. Тоже самое было сделано и с верхними IGBT транзистора, которая снижает мощность на кристалле в момент закрытия. Такое внедрение приводит до повышения мощности в момент открытия ключа транзистора. Но оно происходит практически мгновенно.

В момент открытия IGBT конденсатор С16 разряжается через резистор R24. Зарядка происходит в момент закрытия транзистора через быстрый диод VD3. Как следствие этого, затягивается формат подъема напряжения. Пока закрывается IGBT – снижается выделяемая мощность на ключе транзистора.

Такое изменение электрической цепи отлично справляется с резонирующими выбросами трансформатора, тем самым не позволяя напряжению выше 600 вольт через ключ.

IGBT – это составной трансформатор, который состоит из полевого и биполярного транзистора с переходом. Полевой транзистор выступает тут в качестве главного. Для того, чтобы им управлять требуются прямоугольные импульсы с амплитудой не меньше 12 В, а также не больше 18 В. На этом участке цепи включены специальные оптроны (HCPL3120 или HCPL3180). Возможная импульсная рабочая нагрузка составляет 2 А.

Оптрон работает таким образом. В том случае, когда появится напряжение на светодиоде оптрона, входы 1,2,3 и 4 – запитаны. На выходе мгновенно формируется мощный импульс тока с амплитудой 15,8 В. Уровень импульса ограничен резисторами R55 и R48.

Когда напряжение на светодиоде пропадает, наблюдается спад амплитуды, который открывает транзистор Т2 и Т4. Таким образом создается ток более высокого уровня на резисторах R48 и R58, а также происходит быстрая разрядка конденсатора ключа IGBT.

Мост вместе с драйверами на оптронах собираем на базе радиатора от компьютера Pentium 4, у которого плоское основание. На поверхность радиатора перед установкой транзисторов необходимо нанести термопасту.

Радиатор нужно распилить на две части таким образом, чтобы верхний и нижний ключ не имели электрического контакта между собой. Диоды крепятся к радиатору специальными слюдяными прокладками. Все силовые соединения устанавливаем с помощью применения навесного монтажа. На шину питания понадобится припаять 8 штук пленочных конденсаторов по 150 нФ каждый и максимальным напряжением 630 В.

Выходная обмотка силового трансформатора и дроссель

Так как выходные напряжения без нагрузки достигают 50 В, его нужно необходимо было выпрямить с помощью диодов VD19 и VD20. Затем нагрузочное напряжение поступает на дроссель с помощью которого происходит сглаживание и деление напряжения пополам.

Во время когда IGBT транзисторы открыты наступает фаза насыщения дросселя L3. Когда IGBT находится в закрытом состоянии, наступает фаза разрядки дросселя. Разрядка происходит через замыкающий цепь диод VD22 и VD21. Таким образом ток который поступает на конденсатор выпрямляется.

Стабилизация и ограничение тока при широтноимпульсной модуляции

2 – это вход для усиления напряжения, 1 – выход усилителя. Усилитель изменяет рабочий ток инвертора, а также ширину импульса. Дискретные изменения создают нагрузочную характеристику в зависимости от напряжения обратной связи между блоком питания и входом микросхемы. На выводе 2 микросхемы поддерживается напряжение 2,5 В.

Ширина рабочего импульса зависит от напряжения на входе 2 микросхемы. Ширина импульса становится шире, если напряжение больше 2,5 В. Если же напряжение меньше указанного, то ширина зауживается.

Стабильность работы блока питания зависит от резисторов R2 и R1. Если напряжение сильно проседает вследствие больших выходных токов, то необходимо увеличить сопротивление резистора R1.

Иногда бывает, что в процессе настройки блок начинает издавать некие жужжащие звуки. В таком случае необходимо регулировать резистор R1 и емкости конденсаторов С1 и С2. Если даже такие меры не в состоянии помочь, можно попробовать уменьшить количество витков дросселя С3.

Трансформатор должен работать тихо, иначе сгорят транзисторы. Если даже все вышеперечисленный меры не помогли, нужно добавить несколько конденсаторов по 1 мкФ на три канала БП.

Плата силовых конденсаторов 1320 мкФ

Во время включения блока питания в сеть с напряжением 220 В, происходит скачок тока, после чего выходят из строя диодная сборка VD8, во время зарядки емкости конденсатора. Для предотвращения такого эффекта нужно установить резистор R11. Когда конденсаторы зарядятся, таймер на нулевом транзисторе даст команду сомкнуть контакты и зашунтировать реле. Теперь нужный по величине рабочий ток поступает на электрический мост с трансформатором.

Таймер на VT1 размыкает контакты реле К2, что позволяет использовать процесс широтноимпульсной модуляции.

Настройка блока

Первым делом необходимо подать напряжение в 15 В на силовой мост, проследить правильную работы моста а также монтаж элементов. Далее можно запитать мост напряжением сети, в разрыв между +310 В, где расположены конденсаторы 1320 мкФ и конденсатор с емкостью 150 нФ, поставить лампочку на 150-200 Ватт. Затем подключаем к электрической цепи осфилограф на коллектор-эмиттер нижнего силового ключа. Нужно убедится, что выбросы расположены в нормальной зоне, не выше 330 В. Далее выставляем тактовую частоту ШИМа. Нужно понижать частоту до тех пор, пока не появится на осциллограмме маленький изгиб импульса, который свидетельствует о перенасыщении трансформатора.

Рабочая тактовая частота трансформатора рассчитывается таким образом: сначала измеряем тактовую частоту перенасыщения трансформатора, делим ее на 2 и результат прибавляем к частоте, на которой произошел изгиб импульса.

Затем нужно запитать мост через чайник, мощностью 2 кВт. Отсоединяем обратную связь ШИМ по напряжению, подаем регулируемое напряжение на резистор R2 в месте соединения его с стабилитроном D4 от 5 В до 0, тем самым регулируя ток замыкания от 30 А и до 200 А.

Настраиваем напряжение на минимум, ближе к 5 В, отпаиваем конденсатор С23, замыкаем выход блока. Если вы услышали звон, необходимо пропустить провод в другую сторону. Проверяем фазировку обмоток силового трансформатора. Подключаем осциллограф на нижний ключ и увеличиваем нагрузку, чтобы не было звона, или даже всплеска напряжения выше 400 В.

Измеряем температуру радиатора моста, чтобы радиатор нагревался равномерно, что свидетельствует о качественных мостах. Подключаем обратную связь по напряжению. Ставим конденсатор С23, измеряем напряжение, чтобы оно находилось в пределах 11-11,2 В. Нагружаем источник питания небольшой нагрузкой, величиной в 40 Ватт.

Настраиваем тихую работу трансформатора, изменяя количество витков дросселя L3. Если и это не помогает, увеличиваем эмкость конденсатора С1 и С2, или же размещаем плату ШИМ подальше от помех силового трансформатора.

Предисловие

Хочу заранее предупредить уважаемых читателей данной статьи о том, что данная статья будет иметь не совсем привычную для читателей форму и содержание. Поясню почему.

Предоставленный Вашему вниманию материал абсолютно эксклюзивен. Все устройства о которых пойдёт речь в моих статьях разрабатываются, макетируются, настраиваются и доводятся до ума лично мной. Чаще всего всё начинается с попытки реализовать на практике какую-нибудь интересную идею. Путь бывает очень тернист, и занимает, порой, довольно длительное время и каков будет конечный результат, и будет ли он вообще – заранее не известно. Но, практика подтверждает – дорогу осилит идущий…, и результаты, порой превосходят все ожидания…А как увлекателен сам процесс – словами не передать.Надо признать,что знаний и умений у меня (как у всех, надо отметить) хватает не всегда, и мудрые и своевременные советы только приветствуются, и помогают довести задумку до логического конца. Вот такая специфика…

Эта статья адресована не столько начинающим, а скорее к людям уже имеющим необходимые знания и опыт, которым тоже интересно ходить нехожеными тропами, и которым стандартные подходы к решению задач не столь интересны…Важно понять, что это не материал для бездумного повторения, а скорее – направление в котором нужно двигаться…Не обещаю читателям больших подробностей про очевидные, общеизвестные и понятные грамотному в электронике вещи…, но обещаю, что главная СУТЬ будет всегда хорошо освещена.

Про инвертор

Инвертор, о котором пойдёт речь, появился на свет именно описанным выше образом…К сожалению, я не могу, не нарушая правил публикации данных статей, осветить подробно, как он появился на свет, но уверяю, что схемы двух крайних вариантов инвертора ещё нигде не публиковались…Более того – предпоследний вариант схемы уже практически используется, а крайний (надеюсь – самый совершенный из них), пока лишь на бумаге и ещё не макетировался, но в работоспособности его не сомневаюсь, а изготовление и его проверка займёт всего пару дней…

Знакомство с микросхемой для полу-мостового инвертора IR2153, произвело хорошее впечатление - довольно маленький потребляемый по питанию ток, наличие дид-тайма, встроенный контроль питания…Но у неё два существенных недостатка – отсутствует возможность регулировать длительность импульсов на выходе и довольно маленький ток драйверов…(реально он не озвучен в даташите, но вряд ли он больше чем 250-500 мА…). Необходимо было решить две задачи – придумать, как реализовать регулировку напряжения инвертора, и как увеличить ток драйверов силовых ключей…

Эти задачи удалось решить введением в схему оптических драйверов полевых транзисторов, и дифференцирующих цепей на выходах микросхемы IR2153 (см. Рис.1)


Рис.1

Пара слов о том, как работает регулировка длительности импульсов. Импульсы с выходов IR2153 поступают на дифференцирующие цепи состоящие из элементов С2, R2, светодиод оптического драйвера, VD3-R4- транзистор оптрона…, и элементов С3,R3,светодиод оптического драйвера, VD4-R5- транзистор оптрона…Элементы дифференцирующих цепей рассчитаны таким образом, что, при закрытом транзисторе оптрона обратной связи, длительность импульсов на выходах оптических драйверов практически равна длительности импульсов на выходах IR2153. При этом, напряжение на выходе инвертора – максимально.

В момент, когда напряжение на выходе инвертора достигает напряжения стабилизации, начинает приоткрывается транзистор оптрона …, это приводит к уменьшению постоянной времени дифференцирующей цепи, и, как следствие, к уменьшению длительности импульсов на выходе оптических драйверов. Это обеспечивает стабилизацию напряжения на выходе инвертора. Диоды VD1,VD2 ликвидируют отрицательный выброс, возникающий при дифференцировании.

Тип оптических драйверов умышленно не озвучиваю. Вот почему – оптический драйвер полевого транзистора, это большая отдельная тема для разговора. Номенклатура их очень велика – десятки …, если не сотни типов …, на любой вкус и цвет. Чтобы понять их назначение и их особенности, необходимо поизучать их самостоятельно.

Представленный инвертор имеет ещё одну важную особенность. Поясню. Так как основное предназначение инвертора – зарядка литиевых (хотя – можно любых, конечно) аккумуляторов, пришлось принять меры по ограничению тока на выходе инвертора. Дело в том, что если подключить к блоку питания разряженный аккумулятор, ток зарядки может превысить все разумные пределы…Чтобы ограничить ток зарядки на необходимом нам уровне, в цепь управляющего электрода TL431, введён шунт Rш…Как это работает? Минус заряжаемого аккумулятора подключается не к минусу инвертора, а к верхнему по схеме выводу Rш…При протекании тока через Rш, повышается потенциал на управляющем электроде TL431…, что приводит к уменьшению напряжения на выходе инвертора, и, как следствие, к ограничению тока зарядки. По мере зарядки аккумулятора, напряжение на нём растёт, но вслед за ним, растёт и напряжение на выходе инвертора, стремясь к напряжению стабилизации.Короче - простая, и эффективная до безобразия штуковина. Изменив номинал Rш, легко ограничить ток заряда на любом нужном нам уровне. Именно поэтому, сам номинал Rш не озвучен… (ориентир – 0,1 Ом и ниже…) , его легче подобрать экспериментально.

Предвидя множество поучающих комментариев о «правильности» и «неправильности» принципов зарядки литиевых аккумуляторов, большая просьба – от подобных комментариев воздержаться и поверить на слово,что я более чем в курсе, как это делается…Это большая, отдельная тема …, и в рамках этой статьи она обсуждаться не будет.

Несколько слов о ВАЖНЫХ особенностях настройки сигнальной части инвертора…

Для проверки работоспособности и настройки сигнальной части инвертора необходимо подать +15 Вольт в цепь питания сигнальной части от любого внешнего блока питания и проконтролировать осциллографом наличие импульсов на затворах силовых ключей. Затем, необходимо имитировать срабатывание оптрона обратной связи (подав напряжение на светодиод оптрона) и убедиться, что при этом происходит ПОЧТИ полное сужение импульсов на затворах силовых ключей. При этом, удобнее щупы осциллографа подключить не штатно, а иначе – сигнальный провод щупа к одному из затворов силового ключа, а общий провод щупа осциллографа – к затвору другого силового ключа…Это даст возможность видеть импульсы разных полутактов одновременно …(то, что в соседних полутактах мы увидим импульсы противоположной полярности, здесь значение не имеет).Теперь САМОЕ важное – необходимо убедится (или добиться), чтобы при ВКЛЮЧЕННОМ оптроне обратной связи управляющие импульсы НЕ сужались до нуля (остались минимальной длительности, но не потеряли прямоугольную форму…). Кроме того, важно, подбором резистора R5 (или R4) добиться, чтобы импульсы в соседних полутактах были ОДИНАКОВОЙ длительности…(разница вполне вероятна, из-за разницы характеристик оптических драйверов). См. Рис.2


Рис.2

После этих хлопот, подключение инвертора к сети 220 Вольт, пройдёт, скорей всего без проблем. Очень желательно при настройке подключить к выходу инвертора небольшую нагрузку (автомобильную лампочку на 5 Вт)…Из-за ненулевой минимальной длительности управляющих импульсов, без нагрузки, напряжение на выходе инвертора может быть выше напряжения стабилизации. Это не мешает эксплуатации инвертора, но, от этого неприятного момента, надеюсь избавиться в следующем варианте инвертора.

Важное про рисунок печатной платы – она имеет ряд особенностей…

Последние несколько лет использую платы разработанные под аля-планарный монтаж элементов…То есть – все элементы расположены со стороны печатных проводников. Таким образом припаяны ВСЕ элементы схемы …, даже те, которые от рождения не предназначены для планарного монтажа. Это значительно уменьшает трудоёмкость изготовления. Кроме того – плата имеет абсолютно плоскую нижнюю часть и появляется возможность разместить плату непосредственно на радиаторе. Подобная конструкция заметно упрощает процесс замены элементов при настройке и ремонте. Некоторые соединения (самые неудобные, для разводки печатным способом) выполняются изолированным монтажным проводом. Это вполне оправданно, так как позволяет значительно уменьшить размеры платы.

Сам рисунок печатной платы (см.Рис.3) , это скорее ОСНОВА для именно Вашей конструкции.Её окончательный рисунок будет необходимо корректировать под используемые именно Вами оптические драйвера. Надо иметь ввиду, что разные оптические драйверы имеют РАЗНЫЕ корпуса, и нумерация и назначение выводов, может отличаться от приведённой на схеме в данной статье. Представленная плата пережила уже штук десять модификаций в отношении сигнальной части. Корректировка сигнальной части, порой очень значительная, отнимает совсем не много времени.


Рис.3

Приводить точный перечень элементов в рамках данной статьи я не планирую. Причина проста – главная цель всей этой возни, сделать полезную вещь с минимальными трудозатратами из максимально доступных элементов. То есть - собирайте, из того что есть. Кстати – если выходное напряжение инвертора не планируется делать более двадцати вольт, то в качестве выходного трансформатора можно использовать любой трансформатор от компьютерного блока питания (собранного по полу-мостовой схеме). Фото ниже - общий вид собранного инвертора, чтобы Вы имели представление, как это выглядит (лучше - один раз увидеть, чем сто раз услышать). Очень прошу быть снисходительными к качеству сборки, но у меня просто выхода нет - руки всего две... Паяешь текущий вариант, а в голове уже следующий вариант почти созрел... И иначе - никак...- через ступеньку не прыгнешь...

Да, вот про что забыл упомянуть – наверняка возникнут вопросы про мощность инвертора. Отвечу так – максимальную мощность подобного инвертора заочно трудно оценить…, она определяется, в основном, мощностью применяемых силовых элементов, выходного трансформатора и максимальным пиковым током выхода оптических драйверов. При больших мощностях большое влияние начнут оказывать сама конструкция, демпферные цепи силовых ключей…, понадобится применение синхронных выпрямителей вместо диодов на выходе…Короче – это уже совсем другая история, значительно более сложная в реализации…Что касается описанного инвертора, я использую его для зарядки LiFePO4 аккумулятора с напряжением 21,9 Вольт (ёмкость – 15А/ч) током 7-8 Ампер…Это та грань, где температура радиатора и трансформатора находится в разумных пределах и не требуется принудительного охлаждения…На мой вкус – дёшево и сердито..

Более подробно говорить о данном инверторе в рамках данной статьи я не планирую. Всё осветить не возможно (и отнимает такую тучу времени, надо заметить...), так что будет более разумно обсудить возникшие вопросы в отдельной теме на форуме паяльника. Там я выслушаю все пожелания и критические замечания, и отвечу на вопросы.

Не сомневаюсь - очень многим может не понравится подобный подход. А многие уверены, что всё уже придумано до нас... Уверяю - это не так...

Но это не конец истории. Если будет интерес, то можно будет продолжить разговор …, ведь есть ещё один, крайний вариант сигнальной части. …Надеюсь – продолжение следует.

Дополнения от 25.06.2014

Вот так получается и в этот раз - ещё не успели высохнуть чернила в статье, а уже появились очень интересные мысли, как сделать сигнальную часть инвертора более совершенной...

Хочу предупредить, что все рисунки, помеченные подписью "проект" в полностью собранном инверторе НЕ проверялись! Но если, работоспособность отдельных фрагментов схемы была проверена на макете, и их работоспособность подтвердилась, я буду оговаривать особо.

Принцип работы доработанной сигнальной части, по-прежнему основан на дифференцировании импульсов с микросхемы IR2153. Но с точки зрения правильности построения электронных схем, подход здесь более грамотный.

Пара пояснений - собственно дифференцирующие цепи теперь включают в себя C2, R2, R4 и C3, R3, R5 плюс диоды VD1, VD2 и оптрон обратной связи. Диоды, устраняющие отрицательные выбросы возникающие при дифференцировании - исключены..., так как в них нет необходимости - полевые транзисторы допускают подачу напряжения затвор-исток +/-20 Вольт. Продифференцированные импульсы, меняющие свою длительность при воздействии оптрона обратной связи, поступают в затворы транзисторов Т1, Т2, которые включают светодиоды оптических драйверов...

Данная схема проверена на макете. Она показала хорошую работоспособность и большую гибкость в настройке. Настоятельно рекомендую к использованию.

На фото ниже - фрагмент принципиальной схемы с изменённой сигнальной частью и рисунок печатно платы с коррекциями под доработанную сигнальную часть...

Продолжение следует...

Дополнение от 29.06.14

Вот так выглядит крайний вариант сигнальной части инвертора, о котором я упоминал в начале статьи. Наконец, нашёл время сделать его макет и посмотреть в реалии на его работу… Посмотрел…, и таки – да, именно он и будет назначен самым совершенным из предложенных… Схему можно назвать удачной и потому, что все элементы в ней выполняют функции, для которых и предназначены от рождения.

В этом варианте регулятора использован иной, более привычный, способ изменения длительности управляющих. Импульсы с выходов IR2153 преобразуются из прямоугольной, в треугольную форму, интегрирующими цепями R2,C2 и R3,C3. Сформированные треугольные импульсы поступают на инвертирующие входы сдвоенного компаратора LM393. На неинвертирующие входы компараторов поступает напряжение с делителя R4,R5. Компараторы сравнивают текущее значение треугольного напряжения с напряжением с делителя R4,R5, и в моменты, когда величина треугольного напряжения превышает напряжение с делителя R4,R5, на выходах компараторов возникает низкий потенциал. Это приводит к включению светодиода оптического драйвера… УВЕЛИЧЕНИЕ напряжения с делителя R4,R5 приводит к УМЕНЬШЕНИЮ длительности импульсов на выходах компараторов. Именно это позволят организовать обратную связь выхода инвертора с формирователем длительности импульсов, и обеспечить, тем самым, стабилизацию и управление выходным напряжением инвертора. При срабатывании оптрона обратной связи, транзистор оптрона приоткрывается, напряжение с делителя R4,R5 – увеличивается, что приводит к уменьшению длительности управляющих импульсов…, при этом, выходное напряжение – уменьшается… Величина резистора R6* определяет степень влияния цепи обратной связи на длительность формируемых импульсов… – чем номинал резистора R6* меньше, тем меньше длительность импульсов при срабатывании оптрона обратной связи… При настройке, изменение номинала резистора R6*, позволяет добиться того, что длительность сформированных импульсов в момент срабатывания оптрона обратной связи будет стремиться (или будет равной – здесь это не страшно) к нулю. Рисунки ниже, помогут понять суть работы компараторов.

Пара слов о важном при настройке. Сама процедура настройки, достаточно проста, но сделать её без осциллографа – даже не пытайтесь... Это равносильно попыткам ехать с завязанными глазами... Особенность (и это, скорее, его достоинство, чем недостаток) в том, что он позволят сформировать импульсы с любым соотношением длительностей в соседних каналах... Нужно понимать, что формирователь может как изменить (ввести или устранить полностью) длительность дид-тайма между импульсами соседних каналов, но даже сформировать их так, что импульсы соседних каналов будут «накладываться» друг на друга..., что, естественно – недопустимо... Ваша задача – контролируя осцилографом импульсы на выходе драйверов, изменяя номинал резистора R4*, выставить на неинвертирующих входах компараторов такое напряжение, при котором на выходах драйверов будут сформированы импульсы, разделённые дид-таймом 1-2 мкС (чем дид-тайм шире – тем риск сквозных токов – меньше).

Затем, необходимо включить оптрон обратной связи, и, изменяя величину резистора R6*, выбрать его таким, при котором длительность формируемых уменьшится до нуля. Во время этой процедуры, будет не вредно проконтролировать МОМЕНТ ИСЧЕЗНОВЕНИЯ формируемых импульсов. Очень желательно, чтобы полное исчезновение формируемых импульсов происходило ОДНОВРЕМЕННО... Неодновременное исчезновение возможно, если сильно различны параметры интеграторов R2,C2 и R3,C3. Это можно вылечить небольшим изменением номиналов элементов одного из интеграторов. Я сделал это практически. Для удобства, временно, вместо цепи транзистор оптрона-R6*, подключил потенциометр на 20 Ком, и выставил длительность импульсов на грани исчезновения. Разница в длительности сформированных импульсов, оказалась ничтожной… Но и её я устранил, уставив добавочной конденсатор (всего 30 пФ), параллельно конденсатору С3.

Пара слов об особенностях работы оптических драйверов... При настройке выяснилось,что оптические драйвера лучше работают при большем токе светодиодов.Причём, есть ещё один важный ньюанс – светодиод оптродрайвера потребляет больший ток не в течение всей длительности импульса, а лишь в достаточно короткие периоды (1-2мкС), совпадающие по времени с положениями фронтов импульсов. Это важно, так как позволяет понять, что средний ток потребляемый светодиодом оптодрайвера реально совсем не высок.Этими соображниями обусловлен выбор номинала резистора R7. Реально измеренный ПИКОВЫЙ ток светодиода оптодрайвера, при указанном на схеме номинале составляет 8-10 мА.

В схему добавлен диод (VD5) в цепи в цепи питания нижнего драйвера. Поясню зачем. Применяемые мной оптодрайвера, имеют встроенною систему контроля питания. В связи с тем, что в цепи питания верхнего драйвера всегда используется диод, напряжение питания верхнего драйвера всегда оказывается чуть ниже напряжения питания нижнего драйвера. Поэтому, при снижении напряжения питания, импульсы с выхода верхнего драйвера исчезают чуть раньше, чем нижнего. Чтобы сблизить моменты отключения драйверов и введён диод VD5.На эти моменты всегда следует обращать пристальное внимание…

Здесь же, самое время заметить, что данный формирователь можно использовать (после небольшого изменения логики работы компаратора) вместе с обычными (не оптическими) драйверами полу-мостов. Кто не понял о чём речь, посмотрите, к примеру, что такое IR2113. Подобных – тьма …, и их применение может оказаться даже более предпочтительным, чем оптических… Но это тема для следующего дополнения к статье…Не обещаю, что проверю на практике их работу, но хотя бы на уровне принципиальных схем нескольких вариантов – нет проблем….

Вот так – буков много – но реально настройка сводится к подбору двух резисторов. Хочу особо отметить, что данный формирователь НЕ критичен к своему питанию – в диапазоне питания микросхемы IR2153 (9-15 Вольт), он работает абсолютно адекватно. Исчезновение импульсов с выходов IR2153 при снижении её питания (в момент выключения блока), приводит к закрытию силовых ключей.

Ещё пара советов – не стоит пытаться заменить IR2153 неким аналогом на дискретных элементах – это не продуктивно… Реально, это возможно, но просто не разумно – количество деталей вырастет в разы (в оригинале – их всего три…, куда уж меньше). Кроме того, придётся решать вопросы, по поведению аналога при включении и выключении (а они будут однозначно). Борьба с этим ещё более усложнит схему, и смысл этой затеи сведётся на нет…

Для тех, кому данная тема интересна, прилагаю для удобства откорректированные под данный формирователь рисунки печатных плат. Среди них – собственно формирователь в виде субмодуля... – с них удобнее начать первое знакомство. ОСОБО подчеркну – если решите попробовать настроить формирователь автономно (не подключая силовые ключи), помните, что при настройке необходимо соединить «виртуальный» общий верхнего драйвера, с реальным общим проводом (иначе – у верхнего драйвера будет отсутствовать питание).

Хотя дальнейшее изменения инвертора я не планировал, но надо заметить, что наличие всего одной цепи регулировки длительности, позволят легко ввести в него любые защиты по току. Это, отдельная интересная тема, и мы, возможно, вернёмся к ней позже…

В заключение данного дополнения напомню – от рождения, основное назначение инвертора – зарядка литиевых аккумуляторов. Особыми, очень важными свойствами, его наделяет применение в схеме Rш…Кто не осознал его назначение, рекомендую вникнуть ещё раз в тот раздел статьи, в котором о нём идёт речь.

Если не использовать Rш (перемкнуть) – будем иметь обычный инвертор со стабилизацией напряжения (но, без всякой защиты по току, естественно…).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET

IR2153

1 В блокнот
ИС источника опорного напряжения

TL431

1 В блокнот
Т1, Т2 Полевой транзистор 2 В блокнот
VD1-VD6 Диод 6 В блокнот
VD7, VD8 Выпрямительный диод

FR607

2 В блокнот
VD9 Диодный мост

RS405L

1 В блокнот
Оптопара 1 В блокнот
Оптический драйвер 2 В блокнот
С1 Конденсатор 3900 пФ 1 В блокнот
С2, С3, С10 Конденсатор 0.01 мкФ 3 В блокнот
С4 100 мкФ 25 В 1 В блокнот
С5, С6 Конденсатор 1 мкФ 2 В блокнот
С7, С12 Конденсатор 1000 пФ 2 В блокнот
С8, С9 Электролитический конденсатор 150 мкФ 250 В 2 В блокнот
С11 Электролитический конденсатор 1000 мкФ 1 В блокнот
R1 Резистор

5.1 кОм

1 В блокнот
R2, R3 Резистор

1.3 кОм

2 В блокнот
R4, R5 Резистор

110 Ом

2 В блокнот
R6, R7 Резистор

10 Ом

2 В блокнот
R8, R9 Резистор

10 кОм

2 В блокнот
R10, R15 Резистор

3.9 кОм

2 R10 0.5 Вт. В блокнот
R11 Резистор

3 кОм

1 0.5 Вт В блокнот
R12 Резистор

51 Ом

1 1 Вт В блокнот
R13, R14 Резистор

100 кОм

2 В блокнот
R16, R18 Резистор

1 кОм

2 В блокнот
R17 Резистор

7.76 кОм

1 В блокнот
Резистор

0.1 Ом и менее

1 В блокнот
Трансформатор 1 От компьютерного БП В блокнот
Катушка индуктивности 1 В блокнот
F1 Предохранитель 2 А 1 В блокнот
Задающий генератор. Вариант №2.
Драйвер питания и MOSFET

IR2153

1 В блокнот
T1, T2 MOSFET-транзистор

2N7002

2 В блокнот
Оптопара 1 В блокнот
Оптический драйвер 2 В блокнот
VD1-VD3 Диод 3 В блокнот
С1 Конденсатор 2200 пФ 1